Carbon sequestration by a temperate sedge-grass marsh

Hana Čížková¹

Jiří Dušek², Stanislav Stellner²

 University of South Bohemia, Faculty of Agriculture, České Budějovice, Czech Republic
2 CzechGlobe Research Centre, Academy of Sciences of the Czech Republic, České Budějovice, Czech Republic

Carbon fixation by wetlands

- Important role of wetland ecosystems
- Various types of wetlands differ in their carbon budgets
- Environmental determinants:
 - hydrological regime
 - nutrient availability
- Management practices
 - modification of environmental determinants
 - biomass removal (in the form of harvest).

Role of vegetation

- Ecosystem component responsible for inorganic C fixation
- The vegetation status needs to be considered in studies of carbon budget.

Aims

- 1. Quantify main carbon fluxes in contrasting hydrological conditions
- 2. Relate the rates of C fixation to vegetation status
- 3. Estimate the role of methane in total C emissions

Wet Meadows

Třeboň Basin Biosphere Reserve, Czech Republic

Habitat

49°05'N , 14°46'E Altitude: 428 m Mean annual temp.: 7.4 °C Ann. precipitation: 620 mm

Willow carr (Salix spp.)

Unmown sedge-grass marsh (*Carex* spp.)

Mown wet meadow: reed canary grass (*Phalaris* arundinacea)

Data collection

Meteorological measurements

EMS Brno, CZ

CO₂ fluxes: Eddy covariance

- 3D anemometer (Gill, UK)
- IRGA (LI-COR, USA)

$\underline{CO_2}$ and $\underline{CH_4}$ emissions:

 Laser gas analyzer (Los Gatos, USA)

Data collection

Closed chambers

- Automatic operation
- Continuous measurement
- Temporal variation

- Manual operation
- Portable
- Spatial variation

6x with plants

6x without plants

Data collection

Aboveground biomass:

harvest method

Sesonal course of GPP, NEP

Seasonal course of live biomass

Live aboveground biomass (g.m⁻²)

Results

Crop growth rate (g.m-2.d-1)

C fixed per C in live biomass

Results

CO₂ and CH₄ emissions

Continuous measurement

CO_2 and CH_4 emissions

Preliminary results of comparative measurement on vegetated and unvegetated areas

Date	CO ₂ flux (g CO ₂ -C.m ⁻² .d ⁻¹)		CH ₄ flux (mg CH ₄ -C. m ⁻² .d ⁻¹)			
	With plants	Without plants	With plants		Without plants	
	Mean \pm SD	Mean ± SD	Mean	MAX	Mean	MAX
7.6	24.32 ±4.40	4.44 ± 1.88	101.94	177.33	0.00	0.00
19.7	14.67 ± 1.61	4.77 ± 0.92	2.12	9.56	0.85	4.25
7.9	4.32 ± 1.12	0.55 ± 0.32	6.90	15.93	9.20	19.11

Conclusions

- 1. Differences in seasonal course of C fixation between years
- 2. Clear seasonal course of C fixation per unit of live aboveground biomass
- 3. Small proportion of CH_4 in total C emission.

Thank you!